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texts, and character recognition is the soul of this module. Character recognition is used for the identification of 
handwritten text to its corresponding computer documents. Several states of the art character recognition models are 
based on the application of deep learning model and classifiers utilizing sophisticated feature extraction methods [1]. 
 

 There are more than 435 million peoples in India who uses Hindi style of writing in their daily works. Thus, 
there must be efficient character recognition software for the Hindi Characters which is not present yet. Therefore, 
with the onus to develop an effective Hindi character recognition software, we developed a model for the recognition 
of Hindi numerals. 

The rest of the paper is divided as follows: Sect. 2 discusses the methodology of our model. Sect. 3 contains the 
experimental results in the form of classifier accuracy measure and other related metrics. In Sect.4, we discussed the 
conclusion and future works. 

1.1. Convolutional Neural Network 

Convolutional Neural Network (CNN) is a biologically-inspired variant of Multi-Layer Perceptron’s (MLPs). The 
first CNN architecture was LeNet [2].  
The design of the CNN can be described as the technique of shared weights or local receptive fields [3] [4]. The 
basic building blocks of the CNN are convolution layer, activation, and pooling. The convolution layer consists of 
several convolution kernels (filters) which are used to compute feature maps. In every forward pass of convolution 
layer, each kernel is convolved with the image to generate a feature map.  
The values of feature maps then passed to activation function like ReLU and sigmoid. After activation, the features 
are down-sampled using pooling technique like max-pooling and mean-pooling. It partitions the image into various 
non-overlapping rectangles which then output the downgraded version of activated feature map.  
After several rounds of convolution, activation, and pooling, the resultant images are then fed to the last layers 
which are a fully connected layer for the classification.  
Conforming to these fundamental components, in recent years many new CNN architectures of varying complexity 
have come up like GoogleNet [5], ResNet [6], DenseNet[7], AlexNet [8].  

 

1.2. Genetic Algorithm 

Genetic Algorithm is a metaheuristic that mimics the natural biological genetics and belongs to a larger class of 
evolutionary algorithm. Genetic Algorithm was introduced by JH Holland in 1975 [9]. It can be used in solving both 
constrained and unconstrained problems as it searches the vast solution space efficiently. In GA, a population of 
candidate solutions to an optimization problem is evolved towards a better solution. In GA, there is initialization, 
selection, crossover, mutation and fitness evaluation as its steps. First, the initial population is generated randomly 
called search space, then as per their fitness, a candidate solution is generated from the original population which is 
most adaptable to the environment. Then, the crossover is performed on this candidate after which it is mutated, then 
again a new breed of the solution is selected from this population which then passed to crossover and mutation. 
Thus, after a specific number of crossover, mutation, and selection of solutions, the GA terminates and returns the 
best results.  

1.3. Devanagari Numeral dataset 

The Devanagari numeral database is provided by the Indian Statistical Institute (ISI), Kolkata [10]. This dataset 
comprises of Devanagari numerals from 0 to 9, and this dataset is considered to standard benchmark Devanagari 
numeral dataset, used by various authors all over the world. The dataset contains all possible handwritten numerals 
in Devanagari style. The Fig.1 contains few samples of handwritten Devanagari numerals from the same database. 
Table1 contains training sample and test sample distribution of Devanagari numerals. 
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Fig. 1. Handwritten Deveanagari numeral samples 

 
 
              Table 1. Distribution of numerals in Devanagari dataset 

Digits     Training 
Set 

Test 
set 

0     1844 368 

1     1891 378 

2 

3 

4 

5 

6 

7 

8 

9 

Total 

    1891 

1882 

1876 

1889 

1869 

1869 

1887 

1886 

18784 

378 

377 

376 

378 

374 

378 

377 

378 

3762 

 

1.4. Related Works 

In recent years, there is a rapid advancement of solutions in the object recognition and classification problems. 
Various models and algorithms optimization have been proposed by the researchers. Some of the classification 
models like Support Vector Machine (SVM) [11], Random Forest [12], K-nearest neighbor (KNN) [13] have given 
exceptional results on a small dataset and decent results on large datasets. But, apart from these classification 
models, Neural Network has outperformed these models and has been the mainstay of the solutions proposed due to 
the easy availability of data and its ability to give a much high accuracy and present a good generalization on the 
classification tasks [14].  
CNN is state of the art model for the object recognition and image classification problems. The accuracy of recent 
works with CNN model has achieved almost near-human performance on the standard benchmark CIFAR-10, and 
MNIST dataset which is 96.53% [15] and 99.79% [16] respectively. CNN has been one of the most accurate models 
for the medical imaging and medical signal processing in ECG and EMG signals. CNN architecture has also been 
used in generator and discriminator for the Generative Adversarial Networks (GANs) to generate photorealistic 
images the purpose of visualization and to construct 3-D models of the objects from images.  
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Although these models have given remarkable accuracy, it also has some costs associated with it, and the costs are 
large computation and complex architecture development. The main reason of the costs is due to fine tuning of the 
weights of the neural network to extract better features and slow convergence to the optimal solution.  
To remove this hurdle of slow convergence and getting stuck in local optima, many authors have given methods 
which uses genetic algorithm in ANN (Artificial Neural Network) weight initialization for calculating c-index in 
order to evaluate prognostic models for censored data [17] and for estimating the compressive strength of concrete 
to determine its quality [18]. GA has also been utilized to get the most efficient architecture for a given ANN [21]. 
In stacked autoencoder, GA has been used to get the best initial weights in each layer of the stacked autoencoder 
[20]. Use of GA has also been done in CNN for the weights initialization [21] [22] [23] and as well as architecture 
optimization [24] [25].  Many variants of GA have also been proposed in recent past [26] [27]. The effect of elite 
count on the behaviour of GA has been discussed in [28]. 
The applicability of GA depends on the encoding of the problem and fitness evaluation. And, as NN mostly used in 
complex and large dataset, but when weights of the NN are translated into GA (in case of weight initialization) and 
architecture state of the NN into GA (in case of architecture optimisation), chromosome length becomes large 
enough to make GA less efficient and to evaluate the fitness function, the cost of running NN becomes large which 
makes whole model more time-consuming. 
Many authors have attempted to classify the handwritten Devanagari numeral dataset using various techniques [10]. 
There have been 89% accuracy achieved onto this dataset using contour extraction [29], 92% accuracy using the 
model based on invariant movements and division of image for recognition [30] and 95.64% accuracy using ANN + 
HMM [31].  
In our proposed approach, we tried to classify the Devanagari numeral dataset using CNN in which the weights of 
the fully connected layer has been optimized using GA and the best candidate produced by the GA is then further 
optimized using L-BFGS algorithm. Our results indicate that when we apply second order based optimization 
methods on the weights that are obtained as an output of GA (instead of randomly initialized weights) results in 
faster convergence to the best known optimal value. We have used GA to find the best weights only for the fully 
connected layer of the CNN so that chromosome length remains small and computation cost is also minimal.  

2. Methodology 

Our proposed approach is divided into these different stages: data preprocessing, Feature extraction using sparse 
autoencoder, building CNN architecture, GA implementation to get best weights for the softmax classifier. 

2.1. Data Pre-processing 

Character normalization is considered to be the first and foremost process in the pre-processing pipeline for 
character recognition. The second stage in the pipeline is to bring the image onto a standard plane having fixed 
dimension. The goal of our pre-processing pipeline is to reduce the image noise and interclass and intraclass 
variation. The preprocessing task helps us to extract features of the images more easily and also improves the 
classification accuracy.  
Our pre-processing pipeline consists of following transformations: 

 Every image in our test and train dataset is converted to a greyscale image.  
 For every pixel in our greyscale image, if the pixel intensity is greater than 200, then its value is changed to 

255 which is white in grayscale coding.  
 For every image in our dataset, each pixel value is then subtracted from a value of 0.  
 Every image pixel is added by its same value, then rescaled by a factor of 1, and an offset of -100 is added. 
 As the images were of a non-uniform size, every image is then converted to a uniform size of 28*28 and 

padding of 2 pixels is done. 
Fig2. Shows the pre-processing transformations on our dataset. The first part of the image shows the raw images 
before the pre-processing operation. The second part of the image is after greyscaling and third part of the image is 
after converting the images to a uniform size and applying padding. 
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Fig. 2. Pre-processing transformation samples 

 

2.2. Sparse Autoencoder for feature extraction 

For getting the best features from our dataset, a Sparse Autoencoder was used. Autoencoder is a deep learning 
model which tries to learn the approximation of input data. We can extract low-dimensional features from input data 
by reducing the number of nodes and imposing the sparsity parameter to get essential features which can be used as 
kernels for our CNN classifier.To train our sparse autoencoder and get essential features from our dataset, the cost 
function comprising of the sum of square errors, weight decay and KL. Hyperparameters λ and β were usedfor 
controlling weight decay and KL distance. 
In our sparse autoencoder architecture, the input layer is of dimension 1024, and the output layer is of 81. The input 
of our model is in vectorised images form.This sparse autoencoder is trained using L-BFGS gradient optimization 
for 400 iterations. 

2.3. CNN architecture 

Our CNN architecture consists of an input layer in which images of dimension is 32*32*3 is taken as input. These 
input images are then fed into convolution layer which comprises of the9*9 kernel and 256 features.  
After convolution, we get the output of Dimension 256*24*24 which is then passed to the activation layer which 
returns the output of form 256*24*24. This activated output works as an input for the pooling layer in which we use 
a patch of dimension 8*8 and mean poolingis performed. 
Aftermeanpooling from the pooling layer, we get the output of dimension 256*3*3 which is equal to 2304 and 
works as the length of the chromosome and works as an input for the Genetic Algorithm. 
After running Genetic Algorithm, we get the best candidate of thesame dimension which is then passed to theinput 
of the Fully Connected layer which consists of a single layer softmax regressor and finally L-BFGS is also used to 
improve the weights of our fully connected layer further (The technical details regarding the working of L-BFGS 
could be referred from [32]). 

2.4. Genetic Algorithm implementation 

In our Genetic algorithm implementation, we first generate a population of 10 candidates; and the length of all those 
10 candidates is equal to no. of weights in Softmax Classifier. The chromosomes generated follows the random 
normal distribution with mean = 0 and variance =1. In each iteration, 2 random candidates are chosen with equal 
probabilities, and their fitness is evaluated through the calculation of classification cost by initializing the weights of 
the classifier with the value encoded in the chromosome. 
Among the 2 candidates chosen earlier, the candidate who is having the lower value of classification cost is selected. 
This procedure of selection is repeated 5 times to get 5 candidates for the next generation. In a different method, 5 
other candidates are also generated using crossover operation on our 5 fittest candidates thus making our total 
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population equals 10. After that, mutation operationis carried by changing a small subset of weights to 0 with the 
mutation probability 0.01. This same iterative procedure is repeated and analyzed for 100, 200, and 500 generations. 
The candidate which we get after running this procedure for the given number of generations is then passed to 
Softmax Classifier for the further application ofL-BFGS gradient optimization on this. 

2.5. Methodology Flowchart 

Our complete methodology boils down to the flowchart in Fig4. First of all, the datasetis pre-processed by 
binarizing, uniform pixelation and padding of images of our dataset. Our trained dataset is then fed into the Sparse 
Autoencoder to generate features used for convolution and pooling, and the final pooled images are utilized by the 
softmax classifier for classifying the 10 digits. Genetic Algorithm has been run for the given number of generations, 
and the fittest candidates we get from there is passed as initial weights in Softmax Classifier. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

 
 

Fig. 3. Flowchart of complete methodology 
 
 

3. Results  

All of our simulation was done using Python3 (version 3.5) language along with sublime text editor. L-BFGS 
optimizer for the training of softmax classifier in CNN and sparse autoencoder was taken from Python’s library Sci-
Py [33]. Evaluation of our classifier was done using “metrics.classification_report” and “metrics.confusion_matrix” 
of Sklearn library from Python.  The computer hardware which was used in our simulation consisted of 8GB of 
RAM, Intel Core i5 1.7 GHz processor and NVIDIA GEFORCE 820M graphics card. The time taken to run by our 
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sparse autoencoder to extract 256 features from our trained dataset took 4 hours of computation time. For 
convolution and pooling, it took 3 hours for our training dataset. 

Fig4. (a)Classification cost of the best candidate for 100 generation and (b) Classification cost of training of weights 
in L-BFGS initialized by GA 

Fig4.(a) Shows the cost of best candidates in each generation for a number of generation equals 100. The plot 
indicates that the cost of best candidate decreases after successive generations and the best solution after the given 
number of generations is given to the classifier and then these weights are further optimized using L-BFGS gradient 
optimization.  
Fig4. (b) Shows the cost after each iteration in the training of weights by the L-BFGS gradient optimization whose 
weights were initialized by the GA. 
         Table 2. Comparison of ‘CNN without GA’ and with ‘GA assisted CNN’ 
 Model                     Accuracy Precision       Recall      F1-score  
 
CNN without using GA                                        96.25%                0.96                0.96      0.96 
CNN with GA (for 100 iterations)                       96.41%                0.96               0.96           0.96 
  CNN with GA (for 200 iterations)                      96.54%                 0.97               0.97           0.97 
CNN with GA (for 500 iterations)                       96.09%                0.96               0.96           0.96 
 

4. Conclusion and future works 

Our experimental study shows that the by incorporating the Genetic Algorithm implementation in our Convolution 
Neural Network architecture improves the accuracy. The accuracy further improves a little if the number of 
iterations increased to 200 from 100 but decreases as we further increase the number of iterations to 500 from 200. 
This proves that as we are increasing the number of iterations, the length of the chromosome increases for our GA 
encoding technique, which makes our GA encoding technique less efficient; that’s why on further increasing the no. 
of iterations, the accuracy drops.  
For the future work, we are planning to develop a better encoding technique for our GA implementation so that 
length of the chromosome will not be a problem due to increase in no. of iterations. A much better architecture 
which we are also developing is to make GA applicable on the each layer of CNN. Thus, with the improvement in 
GA encoding and GA implementation on each layer, we are targeting a much higher accuracy on this dataset.  
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2.5. Methodology Flowchart 
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binarizing, uniform pixelation and padding of images of our dataset. Our trained dataset is then fed into the Sparse 
Autoencoder to generate features used for convolution and pooling, and the final pooled images are utilized by the 
softmax classifier for classifying the 10 digits. Genetic Algorithm has been run for the given number of generations, 
and the fittest candidates we get from there is passed as initial weights in Softmax Classifier. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

 
 

Fig. 3. Flowchart of complete methodology 
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number of generations is given to the classifier and then these weights are further optimized using L-BFGS gradient 
optimization.  
Fig4. (b) Shows the cost after each iteration in the training of weights by the L-BFGS gradient optimization whose 
weights were initialized by the GA. 
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iterations increased to 200 from 100 but decreases as we further increase the number of iterations to 500 from 200. 
This proves that as we are increasing the number of iterations, the length of the chromosome increases for our GA 
encoding technique, which makes our GA encoding technique less efficient; that’s why on further increasing the no. 
of iterations, the accuracy drops.  
For the future work, we are planning to develop a better encoding technique for our GA implementation so that 
length of the chromosome will not be a problem due to increase in no. of iterations. A much better architecture 
which we are also developing is to make GA applicable on the each layer of CNN. Thus, with the improvement in 
GA encoding and GA implementation on each layer, we are targeting a much higher accuracy on this dataset.  
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